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Abstract

High-dimensional linear regression has been intensively studied in the com-

munity of statistics in the last two decades. For the convenience of theoret-

ical analyses, classical methods usually assume independent observations and

sub-Gaussian-tailed errors. However, neither of them hold in many real high-

dimensional time-series data. Recently [Sun, Zhou, Fan, 2019, J. Amer. Stat.

Assoc., in press] proposed Adaptive Huber Regression (AHR) to address the

issue of heavy-tailed errors. They discover that the robustification parameter

of the Huber loss should adapt to the sample size, the dimensionality, and the

moments of the heavy-tailed errors. We progress in a vertical direction and

justify AHR on dependent observations. Specifically, we consider an important

dependence structure – Markov dependence. Our results show that the Markov

dependence impacts on the adaption of the robustification parameter and the

estimation of regression coe�cients in the way that the sample size should be

discounted by a factor depending on the spectral gap of the underlying Markov

chain.

Keywords: Adaptive Huber Regression, dependent observations, Markov chain,

high-dimensional regression, heavy-tailed errors.

1 Introduction

In the Big Data era, massive and high-dimensional data characterize many mod-

ern statistical problems, arising from biomedical sciences, econometrics, finance,

engineering and social sciences. Examples include the gene expression data, the

functional magnetic resonance imaging (fMRI) data, the macroeconomic data, the

high-frequency financial data, the high-resolution image data, the e-commerce data,

among others. The data abundance, the high dimensionality and other complex

structures have given rise to a few statistical and computational challenges (?).

An important and fundamental problem is high-dimensional linear regression, in

which the dimensionality (the number of covariates) is much larger than the sam-

ple size so that the ordinary least squares estimation of the regression coe�cients
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is highly unstable. To solve this problem, statisticians have made extensive pro-

gresses in the development of high-dimensional statistical inference (?????). They

commonly make the sparsity assumption that only a small number of covariates con-

tribute to the response variable, and enforce the sparsity of regression coe�cients

by regularization techniques. For a comprehensive and systematic overview of this

high-dimensional regression problem, we refer to ? and ?.

For the convenience of theoretical analyses, many high-dimensional regression

methods assume Gaussian or sub-Gaussian-tailed errors in the model. However,

this assumption is unsatisfied in a broad range of real datasets. See ? for asset

return data, ?? for macroeconomic data, ? for RNA-seq gene expression data, ?

for microarray gene expression data, ? for fMRI data, to name a few. ? argue that

heavy-tailed errors are stylized features of high-dimensional data. These heavy-

tailed errors impair the consistency of many high-dimensional regression methods,

as the ordinary least squares loss function is non-robust to outliers.

Robust loss functions, which are less sensitive to outliers, have been considered

to address the issue of heavy-tailed errors. Huber’s seminar work (??) introduced

robust M-estimators (“M” for “maximum likelihood-type”) and provided the initial

theory on robust regression methods. Asymptotic properties of robust M-estimators

in the low-dimensional setting have been well studied by ??????. Recently ? inves-

tigated theoretical properties of a general class of regularized robust M-estimators

for the high-dimensional linear model with heavy-tailed errors.

More recently, ? studied a specific regularized robust M-estimator, which min-

imizes the `1-regularized Huber loss, for the high-dimensional linear model with

heavy-tailed errors, which admit finite (1 + �)-moments for some � > 0. Remark-

ably, they observe that the robustification parameter of the Huber loss should adapt

to the sample size, the dimensionality and (1 + �)-moments of heavy-tailed errors

for an optimal tradeo↵ between bias and robustness. The adaption of the robustifi-

cation parameter exhibits a smooth phase transition between regimes of 0 < � < 1

and � > 1. Thereafter, they name their method Adaptive Huber Regression (AHR),

to highlight its di↵erence from others’ Huber regression methods with fixed robus-

tification parameter.

Apart from heavily-tailed errors, another common feature of high-dimensional

data, especially those collected in a temporal order, is dependent observations. For

example, fMRI time series data are usually collected from a few di↵erent regions

over a time period (??); the monthly data of macroeconomic variables spanning

the time period of decades are now benchmark datasets used by many econometric

studies (???).

High-dimensional regression has been applied to fMRI time-series data (???)

and economic time-series data (???), although its theoretical framework takes lit-

tle consideration of the dependence structure of observations. For fMRI time-series
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data, the lasso or elastic-net regression method is one of the main tools to find a

small number of functionally-connected regions of a specific region in human brains

from temporally-ordered observations across all the regions (?). On a macroeco-

nomic dataset, (?) regressed the U.S. bond premia on macroeconomic variables

over the time period spanning from January, 1964 to December, 2003. Nevertheless,

the applicability of high-dimensional regression methods to these time-series data

is not fully understood, because these methods assume either unconditional inde-

pendence of data samples directly (as in the random design setup), or conditional

independence of data samples given covariates satisfying some conditions (as in the

fixed design setup) (??). In the latter case, high probabilities of these conditions

are usually verified with independent observations of covariates.

This paper aims to close the gap between theories of high-dimensional regression

methods and practical needs in addressing both heavy-tailed errors and dependent

observations of real data. Inspired by the optimality of AHR dealing with heavy-

tailed errors in the independent setup, we consider extending AHR to cope with the

dependence structure of observations. Albeit of the theoretical results on AHR by

?, it is still unclear whether AHR works for the dependent data. This unclearness

puts the applicability of AHR to many real high-dimensional datasets in doubt.

Even if AHR is justifiable under some type of dependence structure, we are still

curious about the degree to which the data dependence influences the error rate of

the AHR estimator. As an initial step towards full answers for these questions, we

narrow down to the Markov dependence, an important and widely-used dependence

structure, and analyze AHR on Markov-dependent data. Specially, we assume that

covariates are functions of an underlying Markov chain and heteroskedastic heavy-

tailed errors are dependent on the Markov chain.

In this Markov-dependent setup, we show under moderate conditions that AHR

exhibits a similar phase transition of the adaptation of the robustification parameter

and the estimation of regression coe�cients between regimes of 0 < � < 1 and � > 1,

compared to that in the usual independent setup. The only di↵erence is that the

sample size should be discounted by a factor depending on the spectral gap of the

underlying Markov chain.

The core of the proof is to bound in `1-norm the gradient of the Huber loss at

the true sparse vector of coe�cients, denoted by �?, and to establish the restricted

eigenvalue condition of the Hessian of the Huber loss over a neighborhood of �?.

In the usual independent setting, these tasks are accomplished by applying Bern-

stein’s inequality for independent random variables. The Bernstein-type mixture of

the sub-Gaussian and sub-exponential tails is the key to derive the trade-o↵ of bias

and robustness in AHR. However, the analogous tasks in the Markov-dependent

setup are non-trivial, due to the lack of Bernstein’s inequalities for (possibly non-

identical) functions of Markov chains. A very recent work (?) establishes the ex-
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act counterpart of Bernstein’s inequality for bounded, non-identical functions of

Markov chains. But it still does not fully meet the requirements of the theoreti-

cal analyses in this paper, because covariates and errors involved in the theoretical

analyses are unbounded. We develop a truncation argument for the extension of

the Berstein-type inequality in (?) to unbounded functions.

The rest of this paper is organized as follows. Section ?? introduces the high-

dimensional linear model and the methodology of AHR in the Markov-dependent

setup. Section ?? presents the assumptions and the main theorem. Section ??

sketches the proof of the main theorem. Other technical proofs are collected in

Section ??. Section ?? concludes the paper with a brief discussion.

2 Model and Methodology

The goal is to estimate the high-dimensional linear model with Markov-dependent

covariates and heavy-tailed errors. Start with the linear model as follows.

yi = xT
i � + "i, i = 1, . . . , n,

where yi is the response, xi 2 Rd is the vector of d covariates, "i is the error, � 2 Rd

is the vector of d regression coe�cients. In the high-dimensional regime, d is much

larger than the sample size n. To make the model identifiable, assume only a small

number s of covariates contribute to the response, i.e., the vector of true regression

coe�cients �? contains at most s non-zero elements.

Suppose covariates {xi}ni=1 are functions of a stationary Markov chain {Zi}ni=1

on a general state space, i.e., for a collection of d-dimensional vectorial functions

{fi}ni=1, where fi = (fi1, . . . , fid)T,

xij = fij(Zi).

The errors are conditionally independent given the underlying Markov chain and

possibly heteroskedastic. There exists a conditional distribution g(·|z) such that

"i|Zi ⇠ g(·|Zi).

If {Zi}ni=1 are independently and identically distributed (i.i.d.) then this regression

setup reduces to the usual one in which {(xi, "i)}ni=1 are independent.

For the task of estimating the true s-sparse coe�cients �?, consider the `1-

regularized robust M-estimator with the Huber loss as follows.

b�⌧,� = argmin
�

H⌧ (�) + �k�k1, H⌧ (�) =
1

n

nX

i=1

h⌧ (yi � xT
i �), (1)

where h⌧ is the Huber loss (?)

h⌧ (w) =

8
<

:
w2/2 if |w|  ⌧

⌧ |w|� ⌧2/2 if |w| > ⌧,
(2)
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with the so-called robustification parameter ⌧ (?), and � is the regularization pa-

rameter encouraging the sparsity of � (?).

Heuristically, a larger robustification parameter ⌧ reduces the bias of b�⌧,� at the

cost of less robustness. The extreme case of ⌧ = 1 corresponds to the ordinary

least squares estimation. We find that ⌧ should adapt to the sample size n, the

dimensionality d, the heaviness of the tails of the errors and the dependence of

the Markov chain. Suppose the heavy-tailed errors admit finite (1 + �)-moments

(conditionally on Zi’s) for some � > 0. A large � indicates light tails of errors. The

dependence of the Markov chain is measured by a quantity � 2 [0, 1], denoting the

norm of the Markov operator (induced by transition kernel) acting on the Hilbert

space of all squared-integrable and mean-zero functions with respect to the invariant

distribution. A small � indicates a fast convergence of the Markov chain towards its

stationarity from a non-stationary initial distribution (?). Our analyses show under

moderate conditions that the choice of

⌧ ⇣
✓
1� �

1 + �
· n

log d

◆1/(1+min{�,1})
.

achieves the optimal trade-o↵ between bias and robustness in the Markov dependent

setup.

3 Assumptions and Theorems

This section presents our main result under four assumptions. The first assumption

is on the convergence speed of the underlying Markov chain.

Assumption 1 (Markov chain with non-zero spectral gap). The underlying Markov

chain {Zi}ni=1 is stationary with its unique invariant measure ⇡ and admits a non-

zero spectral gap 1� �.

Recall that the quantity � is defined as the norm of the Markov operator (induced

by transition kernel) acting on the Hilbert space of all ⇡-squared-integrable and ⇡-

mean-zero functions. 1� � is called spectral gap of the Markov chain. It has been

involved as constants in mean squared error bound for Markov chain Monte Carlo

(?), Hoe↵ding-type and Bernstein-type inequalities for Markov chains (???????).

A non-zero spectral gap is closely related to other convergence criteria of Markov

chains (???).

Next two assumptions allow both covariates and heavy-tailed errors to be het-

eroskedastic, but impose on them some moment conditions. For the covariates, the

bounded fourth moment of some envelop function is required. For the heavy-tailed

errors, the bounded (conditional) (1 + �)-moment is required.
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Assumption 2 (Covariates with bounded fourth moments). There exists an envelop

function M : z 7! R for functions fij’s, i.e., M(z) � max1in,1jd |fij(z)| for ⇡-

almost every z. And, �4 :=
R
M4(z)⇡(dz) < 1.

Assumption 3 (Errors with bounded (1+�)-moments). E["i|Zi] = 0 almost surely,

i.e.,
R
"g("|z)d" = 0 for ⇡-almost every z. And, for some � > 0 and v� > 0,

E[|"i|1+�|Zi] < v� almost surely, i.e.,
R
|"|1+�g("|z)d" < v� for ⇡-almost every z.

The last assumption is on the restricted eigenvalue of the (aggregated) covariance

matrix of covariates. It is a unified condition in the literature of high-dimensional

regression, see e.g., ? and ?. Let S = {j : �?
j 6= 0} be the index set of active

covariates. Define the `1-cone

C := {u 2 Rd : kuSck1  3kuSk1}, (3)

where uSc is the subvector assembling {uj : j 2 Sc} and uS is the subvector

assembling {uj : j 2 S}. The constant 3 in the definition of C has no specific

meaning. It can be replaced by other constant larger than 1. Write the (aggregated)

covariance matrix of covariates as

⌃n :=
1

n

nX

i=1

E[xix
T
i ]. (4)

Assumption 4 (Restricted eigenvalue of covariance matrix). There exists constant

 > 0 such that, for su�ciently large n,

inf{uT⌃nu : kuk2 = 1,u 2 C} � 2.

It is not hard to see that this condition holds if the smallest eigenvalue of ⌃n

is strictly bounded away from 0 for su�ciently large n. Furthermore, if vectorial

functions fi = f do not vary with i then {xi}ni=1 is a stationary time series as

xi = f(Zi) are functions of the underlying Markov chain {Zi}ni=1. In this case,

⌃n = ⌃ = E[x1xT
1 ], and Assumption ?? holds if the smallest eigenvalue of ⌃ is

strictly bounded away from 0.

Now we are ready to present the main result of this paper. Note that “w.h.p.”

stands for “with high probability 1� o(1)”.

Theorem 1. Suppose Assumptions ??-?? hold and

s

s
1 + �

1� �
· log d

n
= o(1).

Then the AHR estimator b�⌧,� in (??) with robustification and regularization param-

eters

⌧ ⇣
✓
1� �

1 + �
· n

log d

◆1/(1+min{�,1})
, � ⇣

✓
1 + �

1� �
· log d

n

◆min{�,1}/(1+min{�,1})
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achieves estimation errors

kb�⌧,� � �?k1 . s�, kb�⌧,� � �?k2 .
p
s� w.h.p..

Similar to the discovery of ? in the independent setup, there is a smooth phase

transition of ⌧ -adaption and �?-estimation. A small 0 < � < 1 su�ces for AHR

to consistently estimate �?, albeit the rates s(log d/n)�/(1+�) or s1/2(log d/n)�/(1+�)

(given fixed � < 1) are slower than those for the case of � = 1. In the latter case of

� = 1, AHR achieves rates s(log d/n)1/2 for `1-error and s1/2(log d/n)1/2 for `2-error

like classical high-dimensional regression methods; but AHR only requires bounded

second moments of error "i, which is weaker than the sub-Gaussian error condition

in classical high-dimensional regression methods. A larger � > 1 gains no more

estimation accuracy than � = 1.

The Markov dependence impacts on the adaption of the robustification param-

eter and the estimation of regression coe�cients in the way that the sample size

n is discounted by a factor (1 � �)/(1 + �) < 1. In other words, to achieve

comparable ⌧ -adaption and �?-estimation, the required sample size increases by

(1+ �)/(1� �) when moving from the independent setup to the Markov-dependent

setup. Furthermore, this theorem allows � to approach to 1 as n increases, so long

as s
p
(1 + �)/(1� �) · log d/n ! 0. Even though the spectral gap of the Markov

chain is di�cult to accurately compute in practice (?), Theorem ?? also apply if

one replaces � with an inaccurate overestimate �0 � �.

4 Proof of Theorem ??

We break the proof of Theorem ?? into three propositions. Proposition ?? bounds

the `1- and `2-errors of a generic `1-regularized M-estimator b� minimizing L(�) +
�k�k1. Roughly speaking, given a localized restricted eigenvalue (LRE) condition,

it establishes an `2-error bound

kb�⌧,� � �?k2 .
p
skrH⌧ (�

?)k1,

and a similar `1-error bound with an additional factor
p
s, by applying Proposition

1 to (L, b�) = (H⌧ , b�⌧,�). This LRE condition requires strictly positive restricted

eigenvalues over a local `1-neighborhood. It is a simplified version of (?, Defini-

tion 2). Another LRE condition in `2-neighborhood has found applications in (?,

Definition 4.1).

Proposition 1. Consider a `1-regularized minimizer b� = argminL(�) + �k�k1
of a convex, twice di↵erentiable function L : Rd 7! R. Suppose the following two

conditions hold:
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(i) (localized restricted eigenvalue) Recall that S is the support of �?
and that C

is defined as (??). There exists a constant  > 0 such that

inf{uTr2L(�)u : u 2 C, kuk2 = 1, k� � �?k1  48s�/} � .

(ii) A s-sparse �?
satisfies krL(�?)k1  �/2.

Then

kb� � �?k1  48s�/, kb� � �?k2  12
p
s�/.

To facilitate the proof of Theorem ?? as an application of Proposition ?? to

(L, b�) = (H⌧ , b�⌧,�), we establish the LRE condition for the Hessian matrix of the

Huber loss r2H⌧ (�) in Proposition ?? and bound its gradient rH⌧ (�?) in Propo-

sition ??.

Proposition 2. Under Assumptions ??-??, we have

inf{uTr2H⌧ (�)u : kuk2 = 1,u 2 C, k� � �?k1  r}

= 2� sOp

 s
1 + �

1� �
· log d

n
+

1

⌧1+�
+

r2

⌧2

!
.

Proposition 3. Under Assumptions ??-??, for some constant C > 0

krH⌧ (�
?)k1 

s
1 + �

1� �
·
2�2vmin{�,1}⌧1�min{�,1} log d

n

+
1 + �

1� �
· 20⌧ log d

n
+ C⌧�min{�,1}, w.h.p..

Since kb�⌧,� � �?k2 . p
skrH⌧ (�?)k1, optimizing the bound of krH⌧ (�?)k1

in Proposition ?? over ⌧ get the optimal `2-error bound for b�⌧,�. Collecting these

pieces together proves Theorem ??.

Proof of Theorem ??. Setting

⌧ =

✓
1� �

1 + �
· n

log d

◆1/(1+min{�,1})
,

� = 2(
q

2�2vmin{�,1} + 20 + C)⌧�min{�,1},

r = 48s�/

in Propositions ??-?? yields

inf{uTr2H⌧ (�)u : kuk2 = 1,u 2 C, k� � �?k1  r} � , w.h.p..

krH⌧ (�
?)k1  �/2, w.h.p..

Applying Proposition 1 to (L, b�) = (H⌧ , b�⌧,�) completes the proof.
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5 Other Technical Proofs

5.1 Proof of Proposition ??

The proof of Proposition ?? consists of two steps.

(a) b� � �? 2 C, where C is defined in (??).

(b) kb� � �?k1  4
p
skb� � �?k2  r := 48s�/.

Statement (a) asserts that b� belongs to the `1 convex cone C around the estimand

�?. Its proof uses merely the convexity of L, the optimality of b�, and Hölder’s

inequality for vectors, all of which are routine in the literature of high-dimensional

linear regression. ?, Lemma 8 is a slightly stronger version of statement (a). Here

we give a neat proof of statement (a) for the sake of readability. Statement (b)

provides similar but general results compared to ?, Theorem 8: the former allows

Markov-dependent covariate vectors with bounded forth moments (see Assumption

??) to fulfill the LRE condition in Proposition ??, while the latter requires a stronger

condition that covariate vectors are i.i.d. and sub-Gaussian (see ?, Condition 5 and

Theorem 8). Moreover, our proof of statement (b) is simpler than that of ?, Theorem

8, as the latter relies on an auxiliary result of the symmetric Bregman divergence

(see ?, Lemma 2).

Proof of Proposition ??(a). By the optimality of b�,

L(b�)� L(�?)  �(k�?k1 � kb�k1).

By the convexity of L, Hölder’s inequality, and the condition that krL(�?)k1 
�/2,

L(b�)� L(�?) � hrL(�?), b� � �?i � �krL(�?)k1kb� � �?k1 � ��kb� � �?k1/2.

It follows that

2(kb�k1 � k�?k1)  kb� � �?k1.

On the left-hand side, using the fact that �?
Sc = 0,

kb�k1 � k�?k1 = kb�Sck1 + kb�Sk1 � k�?
Sk1

= k(b� � �?)Sck1 + k�?
S + (b� � �?)Sk1 � k�?

Sk1
� k(b� � �?)Sck1 � k(b� � �?)Sk1

On the right-hand side,

kb� � �?k1 = k(b� � �?)Sck1 + k(b� � �?)Sk1.

Putting the last three displays together and rearranging terms completes the proof.
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Proof of Proposition ??(b). First, it follows from step (a) that kb���?k1  4
p
skb��

�?k2. It is left to show 4
p
skb� � �?k2  r. Suppose for the sake of contradiction

that 4
p
skb���?k2 > r. By the optimality of b� and the integral form of the Taylor

expansion,

0 � [L(b�) + �kb�k1]� [L(�?) + �k�?k1]

= �(kb�k1 � k�?k1) + hrL(�?), b� � �?i

+

Z 1

0
(1� t)(b� � �?)Tr2L(�? + t(b� � �?))(b� � �?)dt

For the first term,

�(kb�k1 � k�?k1) � ��kb� � �?k1 � �4
p
s�kb� � �?k2.

For the second term, from the condition that krL(�?)k1  �/2, it follows that

|hrL(�?), b� � �?i|  k(rL(�?))Sk2k(b� � �?)Sk2 + k(rL(�?))Sck1k(b� � �?)Sck1


p
sk(rL(�?))Sk1k(b� � �?)Sk2 + k(rL(�?))Sck1k(b� � �?)Sck1


p
s�

2
k(b� � �?)Sk2 +

3�

2
k(b� � �?)Sk1  2

p
s�kb� � �?k2.

Proceed to lower bound the third term. To this end, note that r/4
p
skb���?k2 < 1

by the initial assumption. For any 0  t  r/4
p
skb� � �?k2,

k[�? + t(b� � �?)]� �?k1  tkb� � �?k1  t⇥ 4
p
skb� � �?k2  r.

Combining it with step (a) that b� � �? 2 C and the LRE condition yield a lower

bound for the third term
Z 1

0
(1� t)(b� � �?)Tr2L(�? + t(b� � �?))(b� � �?)dt

�
Z r/4

p
skb���?k2

0
(1� t)(b� � �?)Tr2L(�? + t(b� � �?))(b� � �?)dt

�
Z r/4

p
skb���?k2

0
(1� t)kb� � �?k22dt =

r

4
p
s
kb� � �?k2 �

r2

32s

Putting the lower bounds of three terms together with the scaling of r = 48s�/

yields

0 �
✓

r

4
p
s
� 6

p
s�

◆
kb� � �?k2 �

r2

32s
= 6

p
s�kb� � �?k2 �

3�r

2
,

which contradicts to the initial assumption that 4
p
skb� � �?k2 > r.
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5.2 Proof of Proposition ??

We first present two lemmas, which are useful in the proof of Proposition ??. Proofs

of these two lemmas are put at the end of this subsection.

Lemma 1. Under Assumptions ??-??,

max
1j,kd

�����
1

n

nX

i=1

xijxik �
1

n

nX

i=1

E[xijxjk]
����� = Op

 s
1 + �

1� �
· log d

n

!
.

Lemma 2. Under Assumptions ??-??,

1

n

nX

i=1

M2(Zi)1{|"i| > ⌧/2}  �2

✓
2

⌧

◆1+�

v� +Op

 s
1 + �

1� �
· log d

n

!
.

Proof of Proposition ??. For any � such that k� � �?k1  r,

1{|yi � xT
i �| > ⌧}  1{|"i| > ⌧/2}+ 1{|xT

i (� � �?)| > ⌧/2}

 1{|"i| > ⌧/2}+ 1{kxik1 > ⌧/2r}

 1{|"i| > ⌧/2}+ 1{M(Zi) > ⌧/2r},

where M is the envelop function introduced by Assumption ??. Let

✏1n = max
1j,kd

������

"
⌃n � 1

n

nX

i=1

xix
T
i

#

j,k

������
= max

1j,kd

�����
1

n

nX

i=1

xijxik �
1

n

nX

i=1

E[xijxik]
�����

✏2n = max
1j,kd

������

"
1

n

nX

i=1

xix
T
i 1{|"i| � ⌧/2}

#

j,k

������
 1

n

nX

i=1

M2(Zi)1{|"i| � ⌧/2}

✏3n = max
1j,kd

������

"
1

n

nX

i=1

xix
T
i 1{M(Zi) � ⌧/2r}

#

j,k

������
 (2r/⌧)2 ⇥ 1

n

nX

i=1

M4(Zi).

For any u 2 C such that kuk2 = 1, we have kuk1  4
p
s. Thus,

uTr2H⌧ (�)u = uT

"
1

n

nX

i=1

xix
T
i 1{|yi � xT

i �|  ⌧}
#
u,

� uT⌃nu� uT

"
⌃n � 1

n

nX

i=1

xix
T
i

#
u

� uT

"
1

n

nX

i=1

xix
T
i 1{|"i| > ⌧/2}

#
u

� uT

"
1

n

nX

i=1

xix
T
i 1{M(Zi) > ⌧/2r}

#
u.

� uT⌃nu� ✏1nkuk21 � ✏2nkuk21 � ✏3nkuk21,

� 2� 16s(✏1n + ✏2n + ✏3n).
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Further bounding ✏1n by Lemma ??, ✏2n by Lemma ?? and

✏3n  (2r/⌧)2 ⇥ (�4 + op(1))

by the law of large number for Markov chains (?, Theorem 17.1.2) completes the

proof.

Proof of Lemma ??. Define a truncation operator

Tt(w) =

8
>>><

>>>:

�t if w < �t

w if |w|  t

+t if w > +t.

(5)

For each 1  j  d and each 1  k  d,
�����
1

n

nX

i=1

xijxik �
1

n

nX

i=1

E[xijxjk]
�����  D1jk +D2jk +D3jk,

where

D1jk =

�����
1

n

nX

i=1

ETt[xijxik]�
1

n

nX

i=1

E[xijxik]
����� ,

D2jk =

�����
1

n

nX

i=1

Tt[xijxik]�
1

n

nX

i=1

xijxik

����� ,

D3jk =

�����
1

n

nX

i=1

Tt[xijxik]�
1

n

nX

i=1

ETt[xijxik]
����� .

Using the fact that |Tt(w)�w|  |w|1{|w| > t}  |w|2/t, Cauchy-Schwarz inequality
and the bounds on fourth moment of the envelop function M : z 7! R in Assumption

??,

max
j,k

D1jk  max
j,k

1

tn

nX

i=1

E[|xijxik|2]  max
j,k

1

t

vuut 1

n

nX

i=1

E[x4ij ]⇥
1

n

nX

i=1

E[x4ik]

 1

tn

nX

i=1

E[M4(Zi)] 
�4

t
.

By a similar argument and the law of large number for Markov chains (?, Theorem

17.1.2)

max
j,k

D2jk  1

tn

nX

i=1

M4(Zi) =
�4 + op(1)

t
.

Noting that |Tt[W ]�ETt[W ]|  2t almost surely, we apply the Bernstein’s inequality

for Markov chains in (?, Theorem 1.1) and yields

P (D3jk > ✏)  2 exp

 
� n✏2

1+�
1�� · Vn,t + 10t✏

!
 2 exp

 
� n✏2

1+�
1�� · �4 + 10t✏

!
,
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where

Vn,t =
1

n

nX

i=1

Var{Tt[xijxik]}  1

n

nX

i=1

E[x2ijx2ik]  �4.

A union bound delivers that

P
✓
max
j,k

D3jk > ✏

◆
 2p2 exp

 
� n✏2

1+�
1�� · �4 + 10t✏

!
.

Let t = 1
10c

q
1��
1+� · n

log d , and ✏ = c
q

1+�
1�� · log d

n for some c >
p

2(�4 + 1). Then

max
j,k

D3jk � c

s
1 + �

1� �
· log d

n

with probability at most

2 exp

 
�
 

c2

�4 + 1��
1+�

� 2

!
log d

!
 2 exp

✓
�
✓

c2

�4 + 1
� 2

◆
log d

◆
.

Collecting these pieces together completes the proof.

Proof of Lemma ??. Note that {(Zi, "i)}ni=1 are identically distributed. Write

E
⇥
M2(Z1)1{|"1| > ⌧/2}

⇤
= E

⇥
M2(Z1)P(|"1| > ⌧/2|Z1)

⇤

 E
"
M2(Z1)

✓
2

⌧

◆1+�

E[|"1|1+�|Z1]

#

 E[M2(Z1)]

✓
2

⌧

◆1+�

v�  �2

✓
2

⌧

◆1+�

v�.

It is left to show
�����
1

n

nX

i=1

M2(Zi)1{|"i| > ⌧/2}� E
⇥
M2(Z1)1{|"1| > ⌧/2}

⇤
����� = Op

 s
1 + �

1� �
· log d

n

!
.

Recall that Tt is the truncation operator with threshold t defined in (??). Break

down the quantity on the left-hand side of the last display into three terms.

D1 +D2 +D3,

where

D1 =
��ETt[M2(Z1)1{|"1| > ⌧/2}]� E[M2(Z1)1{|"1| > ⌧/2}]

�� ,

D2 =

�����
1

n

nX

i=1

Tt[M2(Zi)1{|"i| > ⌧/2}]� 1

n

nX

i=1

M2(Zi)1{|"i| > ⌧/2}

����� ,

D3 =

�����
1

n

nX

i=1

Tt[M2(Zi)1{|"i| > ⌧/2}]� ETt[M2(Z1)1{|"1| > ⌧/2}]

����� .
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Using the fact that |Tt(w)�w|  |w|1{|w| > t}  |w|2/t, Cauchy-Schwarz inequality
and the bounds on fourth moment of M : z 7! R in Assumption ??,

D1 
E[M4(Z1)]

t
=

�4

t
.

By a similar argument and the law of large number for Markov chains (?, Theorem

17.1.2)

D2 
1

tn

nX

i=1

M4(Zi) =
�4 + op(1)

t
.

Noting that |Tt[W ]�ETt[W ]|  2t almost surely, we apply the Bernstein’s inequality

for geometrically ergodic Markov chains in (?, Theorem 1.1) and yields

P (D3 > ✏)  2 exp

 
� n✏2

1+�
1�� · Vt + 10t✏

!
 2 exp

 
� n✏2

1+�
1�� · �4 + 10t✏

!
,

where

Vt = Var{Tt[M2(Z1){|"2| > ⌧/2}]}  E[M4(Z1)] = �4.

Let t = 1
10c

q
1��
1+� · n

log d , and ✏ = c
q

1+�
1�� · log d

n for some c > 0 then

D3 � c

s
1 + �

1� �
· log d

n

with probability at most

exp

 
� c2 log d

�4 + 1��
1+�

!
.

Collecting these pieces together completes the proof.

5.3 Proof of Proposition ??

Proof of Proposition ??. We merely consider the case of 0 < �  1. The proof

for the case of � > 1 is the same with that for � = 1. Recall that Tt is the

truncation operator with threshold t defined in (??), and h⌧ is the Huber loss with

the robustification parameter ⌧ defined in (??). For each 1  j  d,

�rjH⌧ (�
?) = �@H⌧ (�?)

@�j
=

1

n

nX

i=1

T⌧ ("i)xij ,
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Note that E[✏i|Zi] = 0 almost surely in Assumption ??. Write

|E[rjH⌧ (�
?)]|  1

n

nX

i=1

E[T⌧ ("i)|xij |] =
1

n

nX

i=1

E[E[T⌧ ("i)|xi]|xij |]

=
1

n

nX

i=1

E[{E["i|xi]� E[✏i|Zi]}|xij |]

 1

n

nX

i=1

E[E[|"i|1{|"i| > ⌧}|Zi]|xij |]

 1

n

nX

i=1

E[E[|"i|1+�⌧��|Zi]|xij |]  �v�⌧
��

Next, we use a similar argument to that in Lemmas ??-?? to bound the deviations

of rjH⌧ (�?) from their expectations. Break down the deviation into three terms as

follows.

|rjH⌧ (�
?)� E[rjH⌧ (�

?)]|  D1j +D2j +D3j ,

where

D1j =

�����
1

n

nX

i=1

ETt[T⌧ ("i)xij ]�
1

n

nX

i=1

E[T⌧ ("i)xij ]
����� ,

D2j =

�����
1

n

nX

i=1

Tt[T⌧ ("i)xij ]�
1

n

nX

i=1

T⌧ ("i)xij

����� ,

D3j =

�����
1

n

nX

i=1

Tt[T⌧ ("i)xij ]�
1

n

nX

i=1

ETt[T⌧ ("i)xij ]
����� .

Using the fact that |Tt(w)�w|  |w|1{|w| > t}  |w|2/t, Cauchy-Schwarz inequality,
the bounds on moments in Assumptions ??-??,

max
j

D1j 
1

tn

nX

i=1

E[|T⌧ ("i)|2M2(Zi)] 
E[⌧1��|"1|1+�M2(Z1)]

t
 �2v�⌧1��

t
.

Note that the augmented sequence {(Zi, "i)}ni=1 is a stationary Markov chain. By a

similar argument to that in Lemmas ??-?? and the law of large number for Markov

chains (?, Theorem 17.1.2)

max
j

D2j 
1

tn

nX

i=1

⌧1��|"i|1+�M2(Zi)

=
⌧1��(E[|"1|1+�M2(Z1)] + op(1))

t
 ⌧1��(�2v� + op(1))

t
.

Noting that |Tt[W ]�ETt[W ]|  2t almost surely, we apply the Bernstein’s inequality

for Markov chains in (?, Theorem 1.1) and yields

P (D3j > ✏)  2 exp

 
� n✏2

1+�
1�� · Vn,t + 10t✏

!
 2 exp

 
� n✏2

1+�
1�� · �2v�⌧1�� + 10t✏

!
,
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where

Vn,t =
1

n

nX

i=1

Var{Tt[T⌧ ("i)xij ]}  1

n

nX

i=1

E[|T⌧ ("i)|2x2ij ]  �2v�⌧
1��.

A union bound delivers that

P
✓
max

j
D3j > ✏

◆
 2d exp

 
� n✏2

1+�
1�� · �2v�⌧1�� + 10t✏

!
.

Let t = 1+�
1�� · ⌧ then

max
j

D3j >

s
1 + �

1� �
· 2�

2v�⌧1�� log d

n
+

1 + �

1� �
· 20⌧ log d

n

with probability at most 2/d. Collecting these pieces together completes the proof.

6 Discussion

Heavy-tailed errors and dependent observations are two stylized features of many

real high-dimensional data. However, the current framework of high-dimensional

regression assumes sub-Gaussian tails of errors and independent observations for

the convenience of theoretical analyses. Our long-term goal is to generalize the

current framework to cover real cases of both heavy-tailed errors and dependent

observations. While (?) proposed AHR for the robust estimation against heavy-

tailed errors, this paper makes progresses in the vertical direction and deals with

dependent observations.

The technical key of AHR is the Bernstein-type inequality to quantitatively char-

acterize the tradeo↵ between bias and robustness in the Huber regression so that

the optimal robustification parameter is adaptively chosen. For the independent

setup, Bernstein-type inequalities, especially those for unbounded random variables,

have been well established. However, for the Markov-dependent setup, the existing

Bernstein-type inequalities in the literature work for bounded functions of Markov

chains only (??). We develop a truncation argument to extend the Bernstein-type

inequality in (?) to unbounded functions of Markov chains. This truncation ar-

gument is potentially useful for other high-dimensional statistical problems in the

Markov-dependent setup, e.g., the high-dimensional covariance matrix estimation

on Markov-dependent samples.

In the Markov-dependent setup, we find that the ⌧ -adaption and the �-estimation

of AHR exhibits a similar phase transition to that in the independent setup. The

only di↵erence is the sample size n is discounted by a factor (1� �)/(1 + �), where

� is the norm of Markov operator acting on the Hilbert space L2(⇡) and measures
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the Markov dependence. If � = 0 then the conclusion recovers the main result of

? for the independent data samples. If � ! 1 as n ! 1 then the conclusion in

Theorem ?? is still valid so long as

s

s
1 + �

1� �
· log d

n
! 0.

It is also valid if � is replaced with an overestimate �0 � �. Inspired by the discussion

on the optimal variance proxies of concentration inequalities for functions of Markov

chains in (?), we conjecture that the discounting factor (1� �)/(1 + �) is optimally

sharp when translating the theories of high-dimensional linear regression from the

independent setup to the Markov-dependent setup.

The theoretical and practical applicabilities of AHR on time series data with

more complicated dependence structure are the potential directions of future works.

Of particular interest is how the dependence of the time series data get involved

in the ⌧ -adaption and the �-estimation of AHR. However, the theoretical analysis

of AHR in more complicated setups still hinges on the availability of more general

Bernstein-type inequalities. Unfortunately, there are few concentration inequalities

fulfilling the goal to theoretically justify AHR and other high-dimensional regression

methods on data with a general dependence structure.
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